供需大厅

登录/注册

公众号

更多资讯,关注微信公众号

小秘书

更多资讯,关注荣格小秘书

邮箱

您可以联系我们 info@ringiertrade.com

电话

您可以拨打热线

+86-21 6289-5533 x 269

建议或意见

+86-20 2885 5256

顶部

荣格工业资源APP

了解工业圈,从荣格工业资源APP开始。

打开
现实+仿真-超大算力赋能自动驾驶(2022年)

现实+仿真-超大算力赋能自动驾驶(2022年)

来源:IDC NVIDIA

发布时间:2022-12-01

白皮书简介

自动驾驶系统具有高度的复杂性,训练的过程需要以海量场景数据的积累为前提。在训练的过程中,机器需要在有限的时间内对大量的图像信息完成处理,因而需要以巨大的算力作为支撑,造成了训练自动驾驶系统的高成本。与此同时,自动驾驶系统在真实世界中可能遭遇的场景难以穷尽,因而需要系统对驾驶行为进行持续不断的学习,拉长了自动驾驶系统训练的周期。大型车企或一级供应商往往选择建立自有算力资源。


但是,人工智能计算中心的搭建具有较高的技术门槛,运营与维护过程也需要较高水平的经验 积累,因而需要与技术成熟的解决方案供应商开展合作。首先,数据中心解决方案供应商软硬件技术的先进性决定了人工智能计算中心所能提供的算力水平,其解决方案的成熟度又决定了前期搭建所需的时间周期,以及算力供给过程中的稳定性。这些因素共同决定了自动驾驶解决方案的开发周期,因而直接影响了相应的车企是否能够在智能驾驶领域取得市场先机。


在自动驾驶领域具有长期规划的车企或技术供应商需要掌握稳定的算力资源。就这一方面而言,硬件的选型与网络的规模将对数据中心的算力产生直接的影响,涉及IT领域的专业知识, 企业需要具备相关的知识储备,以及驾驭跨行业合作关系的能力。此外,搭建及运营人工智能计算中心的供应商需要提供一套集成的全栈式AI解决方案,以保证自动驾驶系统的开发项目能 以最快的速度上线,并得到持续且稳定的算力支持。


注:本篇报告来自IDC NVIDIA,仅做为学术交流,未经许可请勿做为商业用途,如本资料侵犯了您的合法权益,请添加荣格小助手微信:16621616785, 我们将快速核实并处理。